Panasonic to Start Mass Production of High-speed Gate Driver Dedicated to GaN Power Transistor X-GaN (TM)

Nov 07, 2016

Contributing to space and energy savings of power conversion units.

Munich, Germany - Panasonic Corporation today announced that it will start mass production of a high-speed gate driver (AN34092B) optimized for driving its GaN power transistor X-GaN in November 2016. The company will also start mass production of two types of X-GaN (PGA26E07BA and PGA26E19BA) and provide solutions in combination with high-speed gate drivers.

GaN is one of the next generation semiconductor compounds that can achieve space and energy savings when applied to transistors used in various power units. A gate driver is required to drive a transistor; however, general gate drivers for conventional silicon (Si) transistors cannot exploit the potential of GaN transistors since the gate structure of GaN transistors is different from that of Si transistors.

The new high-speed gate driver (AN34092B) helps our X-GaN easily and safely achieves high-speed switching performance. It can drive transistors at high frequencies of up to 4 MHz and integrates the active miller clamp function[1] that prevents malfunction during high-speed switching. X-GaN achieves a 600 V breakdown enhancement mode[2] through our unique technology and features high-speed switching and low on-resistance[3]. The combination of X-GaN and dedicated high-speed gate drivers will contribute to significant space and energy savings of various power conversion units for industrial and consumer use.

X-GaN and dedicated high-speed gate drivers are suitable for various applications such as 100 W to 5 kW power supply units, inverters, data centers, mobile base stations, consumer electronics, audio-visual equipment, industrial and medical devices.

X-GaN and dedicated high-speed gate drivers will be exhibited at electronica 2016 in Munich, Germany from November 8 (Tuesday) to 11 (Friday) this year.

About High-speed gate driver (AN34092B)

Lineup
AN34092B
Features
- Driving transistors at high frequencies of up to 4 MHz that provide space savings
- Achieving a high slew rate that contributes to energy savings
- Integrating the active miller clamp function that prevents malfunction during high-speed switching

About X-GaN

Lineup
PGA26E07BA (70 mΩ) and PGA26E19BA (190 mΩ)
Features
X-GaN achieves a 600 V breakdown enhancement mode through our unique technology and current collapse free[4]. Its high-speed operations enable higher power conversion efficiency and further size reduction.

[Note]
[1] Active miller clamp
The active miller clamp is a function that directly fixes the gate voltage to the ground level to reduce voltage spikes on the gate in noisy environments that may cause malfunction of the transistor when it is switched off.
[2] Enhancement mode
An enhancement mode is a characteristic of semiconductor devices that is normally switched off when no voltage is applied to the gate. This is also called normally-off.
[3] Low on-resistance
On-resistance is the resistance between the drain and the source electrode of a transistor when the transistor is switched on. The lower the value is, the smaller the loss of the transistor is.
[4] Current collapse
Current collapse is a phenomenon in which electrons in the drain area are trapped by the energy of the high voltage applied between the drain and the source electrode. Since the trapped electrons prevent current flow from the drain to the source electrode when the transistor is switched on, the on-resistance increases.

Media Contacts:
Panasonic Corporation
Global Communications Department
Media Promotion Office
presscontact@ml.jp.panasonic.com
* When submitting your inquiries, please also provide your name, name of media, and country of residence.

Disclaimer:
We would like to note that Panasonic Newsroom is not a place to address personal Customer Service issues. Even though this is not the forum, Panasonic is always eager to resolve your concerns. Our local customer services contacts can be found at http://www.panasonic.com/global/support.html or you can see our list of Social Media Accounts to find the right channel for your queries and concerns here http://news.panasonic.com/global/socialmedia/.

Related Links, Photos & Videos

  • 283px

    Power Transistor, X-GaN(TM)

  • 283px

    Single-channel high-speed gate driver for "X-GaN" power transistor AN34092B

  • X-GaN, #Panasonic Gallium Nitride (GaN) Solutions #PCIM 2016

  • Story of development: Panasonic's new generation power device, "X-GaN"

Devices News

Panasonic Will Bring to Market Aspherical Glass Lenses (Square Type) for Compact High-speed Optical Transmission Modules

Sep 19, 2017

Panasonic Develops 3D LiDAR Sensor Enabling 3D Detection of Distances with Wide Angle of View

Sep 11, 2017

Panasonic Develops Technologies that Detect, Predict, and Control Drowsiness - Helping You Stay Awake and Alert while Driving, Working, and Studying

Aug 09, 2017

News Feeds

RSS Feeds

The content in this website is accurate at the time of publication but may be subject to change without notice. Please note therefore that these documents may not always contain the most up-to-date information.